Optimal hovering kinematics with respect to various flapping-wing shapes

نویسندگان

  • Qi Wang
  • Hans Goosen
  • Fred van Keulen
چکیده

Flapping-wing kinematics for insect flight has been studied for decades, especially since engineers became interested in flapping-wing micro air vehicles (FWMAVs). Previous work mainly focused on understanding kinematic patterns employed by different insects from the perspective of their trajectories and aerodynamics, and on optimization of kinematic parameters to enhance the understanding. However, systematic research on the impact of different wing shapes and corresponding kinematics is incomplete. In this paper, we search for energy-efficient kinematics for hovering flight for a series of wing shapes which are described by a Beta probability density function and the shape parameter r̂1 (the non-dimensional radius of the first moment of wing area) to guide the wing design for FWMAVs. Three kinematic patterns are considered in the optimization: (1) fully active and harmonic kinematics for rigid wings, (2) active kinematics with linear torsion from the wing root to wing tip, (3) kinematics with passive pitching motion. We found that for the first kinematic pattern more efficient hovering flight can be achieved by the wing shape with a larger r̂1, a smaller frequency and no heaving motion, and linearly torsional pitching leads to more energy-efficient flight compared with kinematics with constant pitching amplitude along the leading edge. Additionally, optimal hovering kinematics with passive pitching is accompanied by heaving motion irrespective of its wing shape, which is reflected in insect flight. Although it is important to generate sufficient lift force for hovering with passive kinematics, the presence of the heaving motion dramatically increases the energy consumption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of design parameters of flapping-wings

As one of the most important components of a flapping-wing micro air vehicle (FWMAV), the design of an energy-efficient flapping-wing has been a research interest recently. Research on insect flight from different perspectives has been carried out, mainly with regard to wing morphology, flapping kinematics, and unsteady aerodynamics. However, the link between the wing morphology and kinematics ...

متن کامل

Flight Dynamic Stability of a Flapping Wing Micro Air Vehicle in Hover

This paper discusses a methodology of analyzing the flight dynamic stability of a flapping wing Micro Air Vehicle (MAV) in hover. The flexible flapping wings are modeled by a strain-based geometrically nonlinear beam formulation, coupled with an empirical aerodynamic formulation for load calculation on the wings surfaces. Wing flapping kinematics is described using a set of Euler angles. Nonlin...

متن کامل

Wing Geometry and Kinematic Parameters Optimization of Flapping Wing Hovering Flight

How to efficiently mimic the wing shape and kinematics pattern of an able hovering living flier is always a concern of researchers from the flapping wing micro aerial vehicles community. In this work, the separate or combined optimizations of wing geometry or/and wing kinematic parameters are systematically performed to minimize the energy of hovering flight, firstly on the basis of analyticall...

متن کامل

Untethered Hovering Flapping Flight of a 3D-Printed Mechanical Insect

This project focuses on developing a flapping-wing hovering insect using 3D-printed wings and mechanical parts. The use of 3D printing technology has greatly expanded the possibilities for wing design, allowing wing shapes to replicate those of real insects or virtually any other shape. It has also reduced the time of a wing design cycle to a matter of minutes. An ornithopter with a mass of 3.8...

متن کامل

Numerical Study of Flapping-Wing Flight of Hummingbird Hawkmoth during Hovering: Longitudinal Dynamics

Abstract—In recent decades, flapping wing aerodynamics has attracted great interest. Understanding the physics of biological flyers such as birds and insects can help improve the performance of micro air vehicles. The present research focuses on the aerodynamics of insect-like flapping wing flight with the approach of numerical computation. Insect model of hawkmoth is adopted in the numerical s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016